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Figure 1: Illustration of human video motion transfer using multiple imitating source images. The goal is to generate a video
with motion that is consistent with the target video but with appearance from the input source images. Our framework takes
multiple source images as inputs and progressively improves the quality of the generated video as more imitating images are
provided.

ABSTRACT
We present a novel framework for human video motion transfer.
Deviating from recent studies that use only single source image,
we propose to allow users to supply multiple source images by
simply imitating some poses in the desired target video. To ag-
gregate the appearance from multiple input images, we propose
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a JAFPro framework that incorporates two modules: an appear-
ance fusion module that adaptively fuses the information in the
supplied images and an appearance propagation module that prop-
agates textures through flow-based warping to further improve the
result. An attractive feature of JAFPro is that the quality of its re-
sults progressively improves as more imitating images are supplied.
Furthermore, we build a new dataset containing a large variety
of dancing videos in the wild. Extensive experiments conducted
on this dataset demonstrate JAFPro outperforms state-of-the-art
methods both qualitatively and quantitatively. We will release our
code and dataset upon publication of this work.
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1 INTRODUCTION
Human video motion transfer [1, 6, 10, 31, 38] is a human-centric
topic that has recently attracted much attention in the computer
vision community. Given a set of source images and a target video,
its goal is to generate a video that preserves the appearance of
the source images while following the motion in the target video.
It has significant applications in (a) rendering synthetic training
data of humans performing desired motion for video-related re-
searches such as action recognition and video-based person re-
identification [7, 30, 36], (b) the movie industry for transferring
dangerous motion onto actors to avoid them doing it themselves,
and (c) mass entertainment for allowing users to transfer the mo-
tion of an Internet footage (e.g. dance motions) to themselves by
simply providing several personal images.

Previous studies on human video motion transfer generally fol-
low two approaches. The first one requires a large number (e.g.,
more than 10,000) of source images [1, 6, 31] to synthesize a human
video. It directly takes all source images as training samples and
train a generative model with pose representations as conditional
inputs. This approach can generate photo-realistic human video, but
it requires every user to collect plenty of sample images and train
their own model, which is time-consuming and user-unfriendly.
The second approach takes as inputs only one source image of
a person [4, 19, 20, 22, 25] and a target video to conduct motion
transfer. The network is trained on a large video dataset, enabling
the synthesized video to generalize to various identities. Although
this approach is flexible, its main drawback is that a single source
image (i.e. a single view of the person) obviously does not provide
sufficient appearance information, thus the network can only hal-
lucinate unseen textures, resulting in low-quality and unnatural
videos.

Therefore, the motivation of this work is how to generate an ap-
pealing video of user while requiring as less user-efforts as possible.
To this end, we propose to ask user to provide only a few source
images by simply imitating some discrete poses from the target
video. This is practically useful as it is arduous for a normal user
to imitate the whole video sequence since the human motion in a
video is dynamic and complicated, e.g. it typically takes 6∼8 hours
for beginners to learn a dance [2], even if the dance is with only
simple arm motions. In contrast, roughly imitating some discrete
poses is much easier, as the pose is static and easy to follow. We
also use a simple algorithm (c.f. supplementary document) to select
discrete poses from a given video for users to imitate. Based on
this imitating setting, we propose a novel Joint Appearance Fusion
and Propagation framework abbreviated as JAFPro that generates
high-quality video by leveraging texture information in the input
imitating images. It consists of two parts: an Appearance Fusion
Module that aggregates information from multiple imitating images
progressively and a Flow-based Appearance Propagation Module
that propagates realistic textures from imitating images to nearby
frames in the synthesized video.

JAFPro rectifies shortcomings of two existing approaches be-
cause (1) we take multiple source images as inputs to deal with the

insufficient-information problem. Moreover, we devise an elaborate
appearance fusion module that accepts arbitrary number of input
images and integrates complementary information from them for
progressively improved results as more images are supplied. Com-
pared to simple appearance fusion methods that accept variable
length of inputs (max fusion), our appearance fusion module can
adaptively incorporate information from multiple inputs and thus
preserve sharper details as validated in the experiment section 4.2;
(2) Differ from the first approach [1, 6, 31], JAFPro is trained on
a large video dataset consisting of various motion videos in the
wild. This makes JAFPro more generalized in terms of synthesizing
arbitrary human motion. Furthermore, providing input images in
an imitating manner makes the input images posses similar ap-
pearance with their neighbors in the synthesized video, so that
flow-based propagation can be utilized to convey textures from
these imitating images to their neighboring frames so to improve
results.

In summary, the key contributions of this work are:

• A novel human video motion transfer framework that pro-
gressively improves the quality of generated video as the
number of input source images increases.

• A joint appearance fusion and propagation pipeline that fully
exploits the information of multiple source images.

• A novel fusion scheme conducted on the texture atlas that
effectively fuses textures from multiple source images.

2 RELATEDWORK
Person Image Generation Given a reference image of a person
and a target pose, person image generation aims to generate an
image in which the person in reference image will act as the same
pose as the target pose. The work of [20] is the pioneer for this task,
in which they use 2D keypoints to represent a target pose, and syn-
thesize an output image conditioned on the concatenation of source
image and target pose in a coarse-to-fine manner. However, directly
concatenate source image with target pose without modeling their
misalignment will induce unpleasing artifacts. Several attempts
have been made to deal with this unaligned problem. Ma et al. [21]
propose a disentangled approach which separately encodes fore-
ground, background and pose features, then tiles and decodes these
features to an image to alleviate the unaligned effect. Zhu et al. [41]
view the deformation as a transition on the person image manifold,
and propose to progressively transfer reference image to target
pose through a sequence of intermediate pose representations. On
the other hand, a series of works [4, 25, 40] try to explicitly study
the deformation. Specifically, they use a set of part-based affine
transformations to approximate the non-rigid person deformation.
Another branch of explicit deformation-modeling methods bor-
row the power of 3D human model, including [16, 19, 22, 39]. Our
method also explicitly models the deformation between reference
images and target video by leveraging 3D human models, but a
major difference from previous methods is that we take as input
multiple source images, therefore an adequate fusion method must
be proposed upon aforementioned single source-based methods to
aggregate multi-source information.
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Figure 2: Overview of our JAFPro framework. It comprises an Appearance Fusion Module and a Flow-based Appearance Prop-
agation Module, which are end-to-end trained to produce the final output.

Human Video generation In terms of the requirements of mod-
eling human body dynamics and temporal coherence, human video
generation is amore challenging task than its image counterpart [38].
There are two divisions in the literature of synthesizing human
videos: 1) The first track [1, 6, 31] tries to train identity-specific
model for generating photorealistic videos. More specifically, for
each user, they first ask him/her to provide their own videos, with as
diverse poses and as many frames as possible. Based on these videos,
a pose-to-image model is trained using image-to-image translation
networks [12, 32]. During the inference, a video exhibiting the
user’s appearance can be synthesized from any pose sequence us-
ing the trained model. Moreover, to generate production-quality
videos, Liu et al. [18] introduce 3D model reconstruction combined
with training a character-to-image model. Despite the high-quality
results these methods present, their major difference from ours is
that they require, for each identity, a time-consuming data collec-
tion and model training procedure. 2) The works in another division
focus on generating a sequence of motion-consistent person im-
ages based on a sole starting frame [10, 24, 28, 38]. However, these
methods are more similar to video prediction, in which the future
dynamics must be inferred from the network [28, 38]. Compared
with them, we concentrate on human motion transfer where the
target dynamics is given.

Multi-referenceBased Image Synthesis 3D human reconstruc-
tion from multi-view observations has been studied for several
years [8, 9, 15, 17, 23, 29]. Recent studies also adapt this idea for
multi-view based image synthesis [27, 37]. Sun et al. [27] propose
a trainable network consisting of a flow prediction module and
recurrent pixel generation module to exploit information from mul-
tiple viewpoints for synthesizing a novel view. However, without
explicit 3D supervision, the flow prediction tends to fail when the
object is non-rigid, e.g. the moving human body in our work. In [37],
a network built upon 3D convolutions and attention map predic-
tion module is proposed to aggregate appearances from multi-view
sources. But the inputs of their methods are limited to ‘photometric’
images captured under specific condition, thus not feasible for our
case.

3 ALGORITHM
Given a target motion video [I1t , I

2
t , ..., I

n
t , ..., I

N
t ] (where n is the

frame index within the target video) and multiple source images
[I1m , I

2
m , ..., I

l
m , ..., I

L
m ] (where l denotes the index within sources)

imitating some poses of the target video, that is, the pose of Int and
I lm are roughly aligned, our goal is to generate a video that com-
bines the appearance of {I im }Li=1 and the motion of {I it }

N
i=1. More-

over, we want our framework to be able to take as input arbitrary
number of imitating images, i.e. L is not fixed, and progressively
improve the quality of the synthesized video as L increases. To this
end, as depicted in Figure 2, first, an Appearance Fusion Module
(sec 3.1) absorbs multiple imitating images {I im }Li=1 together with
their Denseposes[3] {P im }Li=1; then, it outputs an intermediate re-
sult Cn+i conditioned on the target Densepose Pn+it , where i is
the frame interval between (Int , I

n+i
t ) and can be either negative

(preceding frames), zero (current frame), or positive (subsequent
frames). The appearance fusion module leverages a recurrent model
to aggregate information from multiple imitating images so that
it can progressively improve the quality of Cn+i . In the sequel, a
Flow-based Appearance Propagation Module finds the nearest imi-
tating frame I lm to Cn+i and propagates its textures to Cn+i via a
dense flow field computed from 3D models (more details will be
covered in sec 3.2). Finally, the output of the whole framework În+it
is a combined version of the propagated textures and Cn+i .

3.1 Appearance Fusion on Texture Atlases
Given the user-provided source imitating images {I im }Li=1, our goal
is to fuse the appearance of them, which is a challenging task. Direct
fusion (e.g. max) on feature space tends to result in blurry result
because input images are not aligned. Therefore, as shown in Fig. 3,
we first transfer the human appearance from RGB images onto
texture atlases using their DensePoses [3] {P im }Li=1, yielding a set
of texture atlases {T im }Li=1 (Fig. 3 only presents two consecutive
atlases [T l−1m ,T lm ] for simplicity); then, we conduct fusion on these
texture atlases. The texture atlas stores the human texture in a
structured way so that textures from different source images are
approximately aligned. This make it more feasible to conduct fusion
on texture atlases than on RGB images.
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Figure 3: Illustration of the Appearance Fusion Module. We
only present two consecutive imitating images (I l−1m , I

l
m ) as

an example for better illustrating the recurrent fusionmech-
anism.

On the other hand, designing an appropriate fusion method is
essential, as textures extracted from different source images usually
have both overlapping and exclusive areas. A proper fusion method
is expected to retain all textures in exclusive areas while selectively
absorbing information from different sources in the overlapping
areas. To this end, inspired by [8, 27], we propose to use Convolu-
tional Long-Short Term Memory [35] (ConvLSTM) for appearance
fusion. This recurrent fusion scheme can not only adaptively fuse
appearance from different sources, but also accept arbitrary number
of input source images and improve the output video quality as
more images are fed into the network. More details are given in the
sequel.

Recurrent Fusion Network. The list of texture atlases {T im }Li=1
are fed into a recurrent fusion network sequentially to aggregate
their information. Specifically, for two consecutive atlases (T l−1m ,T lm ),
we employ an encoder to encode their multi-scale features that flow
into the ConvLSTM cells in the same order. The ConvLSTM cell
will cast away unqualified features and only retain qualified infor-
mation from the new incoming features. After features from all
texture atlases are fused within the ConvLSTM cells, these fused
multi-scale features are sent to the decoder in a skip-connection
manner. In the end, a fused texture atlas Tf use is decoded.

Composition Stage. Subsequently, we cut out the background
from source images and inpaint the missing pixels to yield a new
backgroundCbд . Although the fused texture atlasTf use aggregates
information from all image sources, there are still some missing
pixels. Hence another inpainting network is needed to hallucinate
the missing parts before we obtain a full texture atlas Tf ull , which
mapped back into the image using the target DensePose Pt later. The
remapped image is then sent to a refinement network to obtain a
foreground output Cf д and its corresponding mask Cmask . Finally,
the background and foreground are combined by the following
equation:

C = Cf д ◦Cmask +Cbд ◦ (1 −Cmask ), (1)

where ◦ is element-wise multiplication. We treatC as an intermedi-
ate result as it will enter the Flow-based Appearance Propagation
Module for further refinement as described in section 3.2.

Training Strategy. The training of AFM is very difficult because
we do not have a complete texture atlas to supervise the fusion
process. Therefore, to stabilize the training of AFM, we separately
train the Recurrent Fusion Network (RFN) with a self-supervised
setting. We refer readers to our supplementary document for more
details.

3.2 Flow-based Appearance Propagation
Although the appearance fusion module introduced in section 3.1
can aggregate multi-source information as much as possible, there
are still some missing high frequency textures in the fusion re-
sult. There are two reasons for this loss of details: 1) the dense
correspondences between person images and texture atlases are
sometimes inaccurate (i.e. the estimated DensePose is not accu-
rate), thus a small portion of high frequency details will be lost
during the process of texture mapping and remapping; 2) there are
still a small part of texture information from multiple imitating
source images carried onto the texture atlases are misaligned when
they are fed into the recurrent fusion network. These fuzzy inputs
cause the network to output a blurry image since the network is
agnostic to which source of texture is the right-aligned one. There-
fore, we propose a Flow-based Appearance Propagation Module
(FAPM) to convey detailed textures from multiple source images to
the blurry part caused by previous fusion module. The design of
FAPM is based on the following observation: as imitating images
are roughly aligned with some frames in the target motion video,
we observe that the appearance of imitating images is similar to
their neighboring frames in the synthesized video, as long as the
motion between an imitating image and its neighboring frames
is relatively small. Therefore, the high frequency details from an
imitating image can be exploited to enhance the blurry parts of its
neighboring frames through a flow-based propagation scheme.

3D Flow Calculation. We first estimate the dense motion flow
between an imitating image and its neighboring frames. Instead of
using optical flow for motion estimation, we calculate 3D flow [19]
since the motion range in our video dataset is too large for optical
flow to handle. Specifically, we fit two SMPL models [5, 13] for each
pair of frames. This way a dense flow field can be computed from
the matching vertices on two SMPL models.

Flow-based Propagation. As shown in Fig. 2, for an intermediate
result Cn+i from AFM containing some blurry parts, we locate its
nearest imitating image I lm (i.e. the imitating image thatmost similar
to Cn+i ). Let (Snt , S

n+i
t ) denotes their pre-fitted SMPL models, then

a 3D flow Fn→(n+i) can be calculated from two models; then, the
imitating frame I lm can bewarped by Fn→(n+i) via bilinear sampling
(BS):

Ĩ lm = BS(I lm , Fn→(n+i)), (2)

where Ĩ lm is the warped imitating image that is aligned with Cn+i .
Due to the temporal redundancy, most high frequency contents
are preserved in Ĩ lm and ready to be added onto Cn+i . But there



EDN
ICCV 2019

LW-GAN
ICCV 2019

DPT
ECCV 2018

Ours
(4 frames)

Ours
(1 frame)

GT

Figure 4: Qualitative comparison on the task of video reconstructionwith state-of-the-artmethods:DPT [22], EDN [6], and LW-
GAN [19]. 5 frames are sampled from a generated video. We observe that our method reconstructs sharper and more detailed
textures.

are still a small portion of misaligned and incorrect textures, so we
further employ a encoder-decoder network to learn a confidence
map to determine the correctness of each pixel. LetW denotes this
confidence map, then the final result În+it is a weighted combination
of Ĩ lm and Cn+i :

În+it = Cn+i ◦W + Ĩ lm ◦ (1 −W ), (3)

whereW is a fractional weighting factor.

3.3 Joint Training
Although AFM and FAPM can be trained separately, joint training
can further improve the performance of our proposed algorithm
because the propagated high-frequency textures from FAPM can be
further regarded as a guidance for the fusion process, thus facilitate
each other. Therefore, we jointly train the appearance fusion and
propagation framework in an end-to-end fashion. During training,
L source images are fed into the AFM to synthesize an intermediate
result C . Then, one of the source image I lm , 1 ≤ l ≤ L is randomly
chosen and concatenated with C before being fed to the FAPM to
yield Ît . The final result is compared to the ground truth target
image It .

Objective functions. There are four loss terms during training:
an L1 loss L1, a perceptual loss Lper , a global adversarial loss
LGAN , and a facial adversarial loss Lf aceGAN . The total objective
function is thus

Ltotal = λ1L1 + λ2Lper + λ3LGAN + λ4Lf aceGAN , (4)

where λ1,λ2,λ3,λ4 are the corresponding weighting factors.
The L1 loss is essential in stabilizing training, which is obtained
by computing the L1 distance between the generated image Ît and
the ground truth It :

L1 = E[∥ It − Ît ∥1]. (5)

The perceptual loss is defined as the L1 distance between the syn-
thesized images and the ground truth in the feature space. The
features are extracted from a VGG-19 [26] network. Five layers of

features extracted from the VGG-19 are utilized to compute the
perceptual loss as

Lper = E[∥ ϕ(It ) − ϕ(Ît ) ∥1]. (6)

The adversarial loss is used to facilitate synthesis of details by
fooling a discriminator D, which classifies the ground truth and
synthesized frames as real or fake. The discriminator is also con-
ditioned on the target DensePose Pt . The adversarial loss in our
experiments is

LGAN = E[logD(Ît , Pt ) + log(1 − D(It , Pt ))]. (7)

In addition, the facial adversarial loss is used to help make the
resulting face image look realistic [6]. During training, the facial
area in Ît and It are cropped and resized to a fix-size square image
before going through the discriminator. Denote the cropped face
images as Îf ace and If ace , then the adversarial loss is

Lf aceGAN = E[logD(Îf ace ) + log(1 − D(If ace ))]. (8)

4 EXPERIMENT
Dataset.We build a DanceVideo dataset by collecting 1651 dance
videos in the wild with static background from Internet. Each video
has a length of two seconds with 15FPS (30 frames in total). The
dance videos include two popular dance classes: Jazz and Popping.
For each video, we use DensePose [3] to extract the poses of dancers.
We then crop and resize all images and DensePose maps to 256 ×
256 to construct the final dataset.

Implementation Details. We pretrain the Appearance Fusion
Module for 100 epochs, then jointly train the whole framework for
another 60 epochs. The batch size is set to 4 through the training.
The whole training is conducted on four NVIDIA RTX 2080Ti,
and costs 33 hours. For each training sample, the number of input
source images randomly varies from 1 to 4 following an uniform
distribution. The parameters in the objective function are set to
λ1 = 1, λ2 = 1, λ3 = 2, λ4 = 2. We use Adam [14] optimizer with
learning rate of 1e − 4 for the Appearance Fusion Module, 5e − 5 for



Table 1: Quantitative comparison against the state-of-the-art methods. Values are calculated on entire image and foreground,
respectively. ↑means higher is better; ↓means lower is better.

Methods SSIM ↑ MS-SSIM↑ PSNR↑ L1 error↓ Flow error↓
EDN[6] 0.604/0.895 0.570/0.843 17.33/25.49 0.160/0.033 17.331/4.071
DPT[22] 0.840/0.919 0.873/0.916 23.93/26.97 0.067/0.026 2.937/2.094

LW-GAN[19] 0.828/0.905 0.815/0.853 22.13/24.55 0.069/0.034 3.788/2.393
Ours (1 frame) 0.873/0.932 0.898/0.926 24.90/27.94 0.052/0.023 2.718/2.019
Ours (4 frames) 0.880/0.939 0.915/0.943 25.32/28.67 0.049/0.020 2.660/1.993

(entire picture/foreground only)

Imitating Poses
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Figure 5: Qualitative comparisonwith EDN [6], DPT [22] and
w/o imitating setting on the task of motion transfer. Images
on the left are sources, while 3 frames are sampled from the
transferred video are on the right (better viewed with zoom
in).

the Flow-based Appearance Propagation Module, and 3e − 6 for the
discriminator. For the GAN training, we use an alternating gradient
descent scheme in which the discriminator is updated thrice per
generator update.

4.1 Comparison against State-of-the-Arts
We compare our proposed JAFPro framework against three closely-
related state-of-the-art methods: Everybody Dance Now[6] (abbr.
EDN), DensePose Transfer[22] (abbr. DPT), and Liquid Warping
GAN[19] (abbr. LW-GAN). EDN is a motion transfer framework fo-
cusing on dancing videos, which can be trained on our dataset and
conduct comparison. DPT and LW-GAN are two single-reference
based pose transfer framework, which leverages the Densepose and
3D flow for generation, respectively. We evaluate the performance
on two tasks: 1) video reconstruction that takes one (in single-
source setting) or multiple (in our multi-source setting) frames
from a video as input and reconstructs the whole video; 2) motion
transfer that transfers the motion of a video to a new appearance.

Evaluation Protocol. For video reconstruction task in which the
ground truth video is available, we adopt structural similarity in-
dex (SSIM) [33] and its multi-scale variant MS-SSIM [34], Peak
signal-to-noise ratio (PSNR), and L1 error to evaluate the quality
of synthesized results. Moreover, we also calculate the mean differ-
ence between optical flows of synthesized video and ground truth
video estimated by a pretrained flow estimator [11] to evaluate the
temporal coherency. We evaluate the results of the entire picture
and the foreground separately. For motion transfer task whose re-
sult has no ground truth, we only compare them qualitatively.

Video Reconstruction. For this task, we train all competing meth-
ods on our DanceVideo dataset and evaluate them on the validation
set. Note that EDN [6] requires training a identity-specific model
for each video in the validation set, so we use half of video (only
15 frames) to train a model and reconstruct the whole video uti-
lizing the trained model. The quantitative comparisons are shown
in Table. 1. Our method with multiple source images outperforms
competitors in a large margin in terms of all evaluation metrics, the
qualitative comparison in Fig. 4 also demonstrate this. Since DPT
and LW-GAN take one source image as input, for a fair comparison,
we also compare our method with 1 frame as input against them in
Table. 1 and Fig. 4. Their results are still worse than ours, owing
to the DensePose (DPT) or 3D flow (LW-GAN) they rely on are
difficult to be accurately estimated in our scenarios as the videos
contains more complex backgrounds. In contrast, this downside is
somewhat alleviated in our method by the combination of AFM and
FAPM with a joint training strategy. The ablation study in Sec 4.2
also confirms this.

Motion Transfer. In this task, we invite a volunteer who has never
learned to dance, and transfer the motion of professional dance
video to him (i.e. make him dance like a pro). The volunteer provides
one source image with a front-view standard pose for DPT and
LW-GAN, and supplies multiple source images to our method by
imitating some discrete poses in the target motion video. Note that
the volunteer is just asked to strike roughly similar poses to the
references, so the imitating process is very quick. The synthesized
videos are presented in Fig. 5. Our approach generates more realistic
video than DPT and LW-GAN. In addition, we also ask volunteer to
supply source images to our method without imitating, in this case
four views covering most body areas are inputted. As shown in the
third row of Fig. 5, despite offering more textures, the transferred
video from standard poses preserves less details (especially for the



Table 2: Quantitative comparison of ablation studies. ↑means higher is better; ↓means lower is better.

Variants SSIM ↑ MS-SSIM↑ PSNR↑ L1 error↓ Flow error↓
w/o fusion 0.827 0.841 22.623 0.0733 4.051

w/o propagation 0.869 0.900 24.795 0.0523 2.848
w/o joint 0.867 0.897 24.827 0.0546 2.854

full 0.880 0.915 25.322 0.0492 2.660
no shift (k=0) 0.880 0.915 25.322 0.0492 2.660
1 frame shift 0.876 0.911 25.147 0.0502 2.677
2 frames shift 0.874 0.908 25.044 0.0508 2.686
3 frames shift 0.873 0.906 24.980 0.0512 2.692
4 frames shift 0.872 0.905 24.962 0.0514 2.690

1 frame 0.873 0.898 24.901 0.0517 2.718
2 frames 0.878 0.911 25.218 0.0498 2.687
3 frames 0.879 0.914 25.284 0.0494 2.671
4 frames 0.880 0.915 25.322 0.0492 2.660

Direct fusion (3 frames) 0.867 0.895 24.659 0.0542 -
Max fusion (3 frames) 0.862 0.894 24.539 0.0538 -
ConvGRU (3 frames) 0.863 0.892 24.471 0.0543 -
ConvLSTM (3 frames) 0.869 0.900 24.745 0.0524 -

GTfullw/o propagationw/o fusion w/o joint

Figure 6: Zoom in for details. Qualitative comparison of dif-
ferent variants of our framework. By ablating differentmod-
ules and joint-training setting, our full framework retains a
large portion of sharper textures with less distortions.

wrinkles on pants, the textures on shoes and pattern on clothes),
which confirms the importance of the imitating setting.

4.2 Ablation Study
To investigate the impacts of different modules and settings in our
framework, we conduct ablation studies by removing/changing
some components/settings in this section.

Efficacy of Key Contributions. To validate the effectiveness of
our joint appearance fusion and propagation framework, we com-
pare our full model with the following variants: w/o appearance
propagation,w/o appearance fusion, andw/o joint training. The quan-
titative and qualitative results are shown in Table. 2 (first part) and
Fig. 6, respectively. First, it can be seen that the appearance fusion
module (AFM) contributes significantly to the output because the
w/o appearance propagation variant achieves preferable numerical

No shift1 frame shift2 frames shift3 frames shift4 frames shift

Figure 7: Zoom in for details. Visual comparison of the re-
sults from different number of frame shift. When the num-
ber of frame shift increases, the perceptual change between
the synthesized video is very small, which demonstrate our
robustness to imitating accuracy.

results. This demonstrates the elaborate AFM can aggregate infor-
mation from multiple source images effectively. Second, without
AFM providing the intermediate result, the propagation module
itself cannot generate concordant results although preserves high
frequency contents (c.f. results of w/o appearance fusion variant).
This also indicates the advantage of our joint-framework design.
Third, in the w/o joint training variant, we train two modules (AFM
and FAPM) separately in a stage-by-stage manner. The inferior
results demonstrate that the joint training of two modules (which
corresponds to our full model) leads to the best results.

Robustness to imitating accuracy.As claimed before, our frame-
work only requires user to roughly imitate some poses from target
motion video, i.e. the imitating images can be slightly misaligned
with references. To further investigate the effect of imitating ac-
curacy, we conduct an experiment for the video reconstruction



Source images

Generated output video

Source images

Generated output video

Figure 8: Qualitative illustration of using different number of source images. We gradually increase the number of source
images from top to bottom until reaching 4 sources in total. Three frames are sampled from the synthesized video at each
time. It is observed that increasing the number of source images greatly improves the results especially when the texture
information are mutually complementary.

ConvLSTMConvGRUMaxDirect

Figure 9: Qualitative comparison of using different fusion
methods. Comparing to other methods, our ConvLSTM fu-
sion method retains sharper textures as highlighted in the
red boxes.

task by shifting the input source image to its reference pose by k
frames. For example, given Pnt as reference, input pair with [Int , P

n
t ]

is shifted to [In+kt , Pn+kt ], and textures from this shifted pair are
propagated to the neighbors of Pnt . This way we deliberately mis-
place the imitating image with its reference pose. Table. 2 (second
part) and Fig. 7 show the results of varying k . When k increases (i.e.
the imitating becomes more inaccurate), the decrease in numerical
results are within a very small range, and the visual difference is
also minor, which demonstrate our system is robust to slightly dis-
similar imitating images.

Effect of Number of Source Images. As discussed in the intro-
duction, existing methods based on only one source image will
suffer from the insufficient-information problem. In contrast, our
framework takes multiple source images as input and can progres-
sively improve the synthesized results as more imitating images
are supplied. To verify this, we conduct comparative experiments
by ablating the number of source images. Specifically, we input
L, 1 ≤ L ≤ 4 source images into our framework and compare
the final synthesized video at each time. The quantitative results
shown in Table. 2 (third part) indicate that increasing the number of
source images improves the quality of synthesized video gradually.
Moreover, from the qualitative result in Fig. 8, we can observe a

significant promotion on the fine-grained textures such as clothing,
shoes, and facial details as more source images are added.

Fusion Methods. In order to show the effectiveness of our pro-
posed ConvLSTM fusion in AFM, we compare it with several other
fusion methods: (1) Direct fusion which concatenates multiple tex-
ture atlases before feeding them to the network; (2) Max fusion
which aggregates features of multiple texture atlases by a max
pooling; (3) ConvGRU fusion that utilizes Convolutional Gated Re-
current Units in the RFN. We solely train the AFM with 3 frames
as input for better ablating on the fusion method. The qualitative
results in Fig. 9 show that our ConvLSTM fusion method preserves
sharper textures while other methods tend to cast away impor-
tant textures or blur the results. And the numerical comparison in
Table. 2 (fourth part) also supports our superiority.

5 CONCLUSION
We propose a joint appearance fusion and propagation framework
named JAFPro for human video motion transfer from multiple imi-
tating images. By designing an elaborate fusion scheme, our frame-
work is able to take arbitrary number of source images as input, and
the information from multiple sources are effectively aggregated.
The synthesized video are also progressively improved as more
sources are supplied. With the imitating setting, our framework
propagates realistic textures from imitating image to its nearby
frames through flow based warping, which further improves the
results. Compare to previous works, our framework gains superior
results in terms of both visual perception and quantitative measures.
Furthermore, a series of ablation studies also verify the efficacy of
our key contributions.
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